trezor.io
Rate this file (Rating : 5 / 5 with 1 votes)
Construction of the World Trade Center
trezor.io

Construction Of The World Trade Center

The core of the towers housed the elevator and utility shafts, restrooms, three stairwells, and other support spaces. The core of each tower was a rectangular area 87 by 135 feet (27 by 41 m) and contained 47 steel columns running from the bedrock to the top of the tower. The large, column-free space between the perimeter and core was bridged by prefabricated floor trusses. The floors supported their own weight as well as live loads, providing lateral stability to the exterior walls and distributing wind loads among the exterior walls. The floors consisted of 4 inches (10 cm) thick lightweight concrete slabs laid on a fluted steel deck. A grid of lightweight bridging trusses and main trusses supported the floors. The trusses connected to the perimeter at alternate columns and were on 6 foot 8 inch (2.03 m) centers. The top chords of the trusses were bolted to seats welded to the spandrels on the exterior side and a channel welded to the core columns on the interior side. The floors were connected to the perimeter spandrel plates with viscoelastic dampers that helped reduce the amount of sway felt by building occupants.
Hat trusses (or "outrigger truss") located from the 107th floor to the top of the buildings were designed to support a tall communication antenna on top of each building. Only 1 WTC (north tower) actually had an antenna fitted; it was added in 1978. The truss system consisted of six trusses along the long axis of the core and four along the short axis. This truss system allowed some load redistribution between the perimeter and core columns and supported the transmission tower.
The tube frame design using steel core and perimeter columns protected with sprayed-on fire resistant material created a relatively lightweight structure that would sway more in response to the wind compared to traditional structures such as the Empire State Building that have thick, heavy masonry for fireproofing of steel structural elements. During the design process, wind tunnel tests were done to establish design wind pressures that the World Trade Center towers could be subjected to and structural response to those forces. Experiments also were done to evaluate how much sway occupants could comfortably tolerate, however, many subjects experienced dizziness and other ill effects. One of the chief engineers Leslie Robertson worked with Canadian engineer Alan G. Davenport to develop viscoelastic dampers to absorb some of the sway. These viscoelastic dampers, used throughout the structures at the joints between floor trusses and perimeter columns along with some other structural modifications, reduced the building sway to an acceptable level.

File information
Filename:475369.jpg
Album name:World & Travel
Rating (1 votes):55555
Keywords:#construction #world #trade #center
Filesize:91 KiB
Date added:May 01, 2012
Dimensions:700 x 489 pixels
Displayed:48 times
URL:displayimage.php?pid=475369
Favorites:Add to Favorites